解决方案

多系统融合数据挖掘


上海云翎多系统融合数据挖掘分析方法:

数据挖掘

· 分类 (Classification)

· 估计(Estimation)

· 预测(Prediction)

· 相关性分组或关联规则(Affinity grouping or association rules)

· 聚类(Clustering)

· 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

方法简介:

·分类 (Classification)

首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。

· 估计(Estimation)

估计与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类数据挖掘的类别是确定数目的,估值的量是不确定的。

· 预测(Prediction)

通常,预测是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。

· 相关性分组或关联规则(Affinity grouping or association rules)

决定哪些事情将一起发生。

· 聚类(Clustering)

聚类是对记录分组,把相似的记录在一个聚集里。聚类和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。

· 描述和可视化(Description and Visualization)

是对数据挖掘结果的表示方式。一般只是指数据可视化工具,包含报表工具和商业智能分析产品(BI)的统称。譬如通过Yonghong Z-Suite等工具进行数据的展现,分析,钻取,将数据挖掘的分析结果更形象,深刻的展现出来。


0.0326s